

Technical support personnel at Linotype-Hell are asked many questions
related to the PostScript™ page description language, but undoubtedly the
most common request that they get is for lists of PostScript errors. To that
end, reprinted in this article is a list of PostScript errors from Adobe Systems
‘Red’ book, The PostScript Language Reference Manual (Addison Wesley).
But there is much more to troubleshooting than lists of errors and solutions. If
lists were the only thing required for troubleshooting, then PostScript errors
would be easily solved in every case. In fact, cause/solution lists can often be
deceptive rather than helpful. Why? Because a given error may have many
possible causes, and any list that is created is locked in time based on the
PostScript version, the software application version, hardware revisions, and
many other variables. As technology changes the list is soon outmoded.

It is more important to teach people how to approach PostScript error
troubleshooting. That was the purpose of the article, Troubleshooting
PostScript Errors, which is included in the 1992 Linotype-Hell technical
information notebook. Still, there is no way of getting around the fact that the
most advanced troubleshooting methods require that the troubleshooter have
some familiarity with PostScript programming. For that reason, a number of
PostScript programming resources are listed at the end of this document.

Error types There are three possible types of errors in a PostScript environment1:

Application and printer driver errors are commonly mentioned to Linotype-
Hell technical support staff. Unfortunately, these errors are based on lists of
errors that have been compiled in the driver and they tell you very little about
the actual problem. Common application and printer driver errors are: -4100,
-8133, or ‘The job is OK but can’t be printed.’ These errors do not help very
much in troubleshooting.

RIP reported errors are the errors that appear on the panel of a Raster
Image Processor (RIP) or imagesetter. Probably the most common Linotype-
Hell RIP error is E12 (no take-up cassette). These errors are listed in the RIP
user manual and are usually very easily solved.

PostScript interpreter errors are reported back from the RIP after a job has
been processed. Finding these errors is the first step in troubleshooting.

Application and printer driver errors may be intertwined with PostScript
interpreter errors in the following fashion. Sometimes the actual PostScript
interpreter error is intercepted by the driver and replaced with an application
or printer driver error. The PostScript interpreter error may appear on the
screen only very briefly or may be thrown away entirely.

PostScript error list There are thirty possible PostScript errors. (See chart on the following page.)
Some of the errors are so obscure that you are unlikely ever to see them.
Most have been PostScript errors since the inception of the language. Some
have been added with the introduction of Level 2 PostScript
(configurationerror, invalidcontext, invalidid, undefinedresource) and one
(dictfull) will no longer be an error in PostScript Level 2.

PostScript
Error Update

L

Page 5

Technical
Information

1This topic is covered in greater
detail in Troubleshooting
PostScript Errors which appears
in the 1992 Linotype-Hell
technical information notebook.

Page 6

The 30 kinds of PostScript errors:

PostScript error Red Book explanation Additional explanation/typical occurrence
configurationerror setpagedevice

request cannot i.e., a requested feature that is not available
be satisfied on that device

dictfull no more room in dictionary (see description on page 7)

dictstackoverflow too many begins each begin command must have a
corresponding end command

dictstactunderflow too many ends each end command must have a
corresponding begin command

execstackoverflow exec nesting too deep too many pending nested procedure calls
(very obscure error)

handleerror called to report error information (not actually an error procedure)

interrupt external interrupt request Control-C is used to abort a program
(e.g., Control-C)

invalidaccess attempt to violate access attribute i.e., writing to a read-only dictionary

invalidcontext improper use of context operation (Display PostScript error)

invalidexit exit not in loop exit command improperly used
(very obscure error)

invalidfileaccess unacceptable access string i.e., writing to a read-only file
(very obscure error)

invalidfont invalid font name or dictionary corrupted or improperly formed font dictionary

invalidid invalid identifier for external object (Display PostScript error)

invalidrestore improper restore often a string, dictionary, or procedure is left
on the stack that needs to be discarded
before restore

ioerror input/output error occurred may signal incorrect handshaking protocol
or improperly terminated or faulty cables

limitcheck implementation limit exceeded i.e., with too many path elements in a lineto
or curveto segment

nocurrentpoint current point is undefined i.e., if the required moveto command is not
supplied

rangecheck operand out of bounds i.e., a film width request greater than that used
by the target output device

stackoverflow operand stack overflow received more data than it can accommodate

stackunderflow operand stack underflow expected more data than it received

syntaxerror PostScript language syntax error i.e., an open or closing mark (for example, a
bracket) is missing

timeout time limit exceeded occurs when there is too great a time gap
between receiving two portions of the same job

typecheck operand of wrong type i.e., an operator expected one type of data
and got something else (very frequent error)

undefined name not known no definition exists in the dictionary

undefinedfilename file not found like it says

undefinedresource resource instance not found Level 2 error (very obscure error)

undefinedresult over/underflow or meaningless result often a division by zero

unmatchedmark expected mark not on stack such as a closed bracket to go with an
open one

unregistered internal error undefined, undocumented statusdict operator
(very obscure error)

VMerror VM exhausted no more available user memory

Page 7

PostScript error format The format of PostScript errors from the RIP always consists of two parts: the
type of error, and the offending command. Any other message formats are
generated either by the application or printer driver. The message coming
back from the RIP will usually look like this:

%%[Error: OffendingCommand:]%%

Here’s an example:
%%[Error: dictfull; OffendingCommand: def]%%

In the above example, the type of error is dictfull and def is the offending
command. Generally, a dictfull error occurs when the PostScript program
attempts to define a new entry in a dictionary that is already full. A dictionary
has a fixed limit on the number of entries that it can hold, and this limit is
established when the dictionary is created. (Dictionaries are created to hold
pairs of PostScript objects, for example a variable and its current value.)

The offending command is the command that was being executed when the
error occurred. In this example, the def operator tells the interpreter to define
a name (called a key) and associate it with a value (which can be a number,
a procedure, or even a dictionary). The def command almost always appears
with a dictfull error because the interpreter is usually in the process of
defining something when it discovers that there is no more room in the
dictionary. The dictfull error is very common, and often occurs because of
problems related to the software application:

• The software application may create too small a dictionary and then
proceed to create to many entries for that dictionary. Or, other applications
may use the dictionary in ways that the first software application
programmers didn’t anticipate.2

• The software application may use an existing dictionary, in most cases the
userdict. The userdict is a device dependent dictionary containing spaces
for 200 entries. The number of entries actually used will vary with different
output devices (and PS versions). This is one common reason why files
that run on a laser printer may not run to a high resolution output device:
the laser printer’s userdict may be nearly empty, and is not overtaxed by
applications that use it. The situation is very different in the userdicts of
more sophisticated output devices. Certain keys have to be placed in the
userdict by the raster image processor (RIP) running the imagesetter. This
leaves fewer available spots in these userdicts for a software application
that might choose to use it.

• Because there are a number of different dictionaries that may be placed on
the dictionary stack3, there may be some problem when a PostScript
program adds to its dictionary. For example, errors often occur because
the target dictionary is not on the top of the dictionary stack. If the same
key occurs in two dictionaries, the RIP will take the first occurrence of the
key that it finds (and that may not be the one that was redefined).

The dictfull error is a good example of how changes in the PostScript page
description language change the nature of the errors that users see.
Engineers at Adobe Systems, concerned by problems with dictionaries with
fixed limits, decided to integrate a method of increasing dictionary size on-
the-fly into PostScript Level 2. By increasing the size of a dictionary as it
starts to fill up, dictfull errors can be avoided. This is one of many changes
that have been made in PostScript Level 2 and is the reason why dictfull
errors will not appear in PostScript Level 2 devices.

Troubleshooting Troubleshooting is the process of finding out what the error is, and then once
the error is known, doing something about it. There are a number of different
levels of complexity in troubleshooting, some requiring diagnostic tools or
programming experience, and some being quite simple.

2This is one more reason why
lists of errors can be misleading.
For example, new dictful errors
may occur with files that have
previously run without error if
software applications are used
together in a new fashion, or
even if there are releases of
new versions of software. So-
called well-formed or well-
behaved applications (those
that follow the PostScript
Document Structuring
Conventions) should not cause
this kind of problem, but in the
real world, not all applications
are well-formed.

3A stack is a holding place for all
different types of data. There
are several stacks that are used
in PostScript, including one for
dictionaries.

The first two columns from the
chart on page 6 are from page
359 of the PostScript Language
Reference Manual, Second
Edition, Adobe Systems, Inc.,
Addison-Wesley Publishing Co.,
Inc., 1990. More information on
the meaning of each error listed
here is shown in the Operator
Details section from page 360-
553. The ‘Additional
explanation/typical occurrence’
column is drawn from a variety
of sources including the
PostScript Language Level 2
Reference Card (see list of
recommended materials).

Divide and Conquer is a simple strategy that narrows down the location of a
PostScript error by removing or simplifying page elements until the job prints
error free. (For a fuller description see Troubleshooting PostScript Errors.)
While Divide and Conquer is a useful technique, it is also very time
consuming. However, it requires no familiarity with PostScript programming.

Error handling programs are primarily helpful in finding the location of an
error, not in the solution. But identifying the error is a very important first step
towards solving the problem. In addition, error handling programs have other
useful features. For example they may print out the error on the film, or save
it in a location that makes it easier to find. They may show you the next 2-4
lines of code, or even the current point and other current page parameters.

Finally, the most sophisticated solution to PostScript errors involves going
into a file and making changes to the code. Using PostScript programming
in this manner is an important tool, but one that requires an experienced eye
and obviously, some amount of programming skill. (LaserTalk™ is very
useful for troubleshooting.4 It allows you to download a file line by line and
view any problems as they develop. It also lets you keep track of the stacks
and other parameters or current conditions during execution of a file.)

Analyzation programs While not strictly speaking an error handling tool, analyzation programs like
LinoCheck™ and LaserCheck™ allow users to identify common problems
before they reach film. LinoCheck is a Linotype-Hell product and LaserCheck
is a product developed by Systems of Merritt (see below).

Conclusion These are the two most important troubleshooting tips:

• Learn to identify the PostScript error. (Having the real error message rather
than an application or printer driver message makes it easier to proceed
with troubleshooting.)

• Learn more about the PostScript page description language.

Recommended materials Here are some good sources of information on PostScript programming:

• Two books by Glenn Reid provide excellent and very readable information
on PostScript. They are Thinking in PostScript and PostScript Language
Program Design (also known as the ‘Green book’). Both books are
published by Addison-Wesley.

• Frank Braswell of Systems of Merritt has produced a handy, plastic-coated,
one page reference sheet of PostScript operators, interpreter messages,
and errors. This is a nice tool for the serious troubleshooter. Braswell also
offers a two-day seminar on PostScript error troubleshooting, call him at
205-660-1240 for more information.

• Acquired Knowledge offers a variety of classes on PostScript
programming, call them at 619-587-4668 for more information.

Acknowledgements Many thanks to Frank Braswell of Systems of Merritt, Bob Schaffel executive
director of the Professional Prepress Alliance, and Gus Barbuto of Linotype-
Hell Company for their help in producing this document.

Page 8

Please direct any questions or comments to: Jim Hamilton, Marketing Department, Linotype-Hell Company, 425 Oser Avenue, Hauppauge, NY 11788
(For subscription information on the Linotype-Hell technical information series, please call 1-800-842-9721.)

February 1993, Part Number 7006 © 1993 Linotype-Hell Company. All rights reserved.
• Linotype and Hell are registered trademarks and LinoCheck is a trademark of Linotype-Hell AG
and/or its subsidiaries.

• Adobe, LaserTalk, and PostScript are trademarks of Adobe Systems, Inc., which may be registered in
certain jurisdictions.

• LaserCheck is a trademark of Systems of Merritt, Inc.
All other company and product names are trademarks or registered trademarks of their respective owners.

4Adobe Systems, Inc., the maker
of LaserTalk, is in the process of
producing an updated version.

