Linotype-Hell

TechnicalMaintaining aInformationFilm Processor

As imagesetter output of tints, graphics, and scanned images becomes commonplace, the role of the film processor has become very important. Every shop with a film processor needs to pay special attention to the issues involved in its maintenance, because consistent output can only be achieved through careful monitoring.

Anatomy of a piece of film To understand how a processor works, it is important to know the make-up of a piece of film. A typical graphic arts film is made up of many layers. (See Figure 1.) The *emulsion* is a light sensitive substance made up of silver halide suspended in gelatin material. It is spread over the *base* material which nowadays is usually polyester or acetate, but in early photographic

methods was glass. The emulsion has an *overcoat* to protect it during handling. Below the emulsion is an *interlayer* that helps the emulsion adhere to the base material. Beneath the base is an *undercoat* which helps to keep the film from curling. The *anti-halation backing* prevents light from reflecting back up and reexposing the emulsion.

The emulsion in scanner and imagesetter films contains silver halide. When the silver halide in the film is exposed to enough light, for example by the laser beam of an imagesetter, a chemical reaction takes place. This forms a latent image, i.e., an image that will not be visible until the film is processed. During processing, these exposed areas turn black.¹ Unexposed silver halide is washed off of

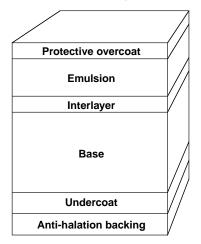


Figure 1 - Cross section of a typical graphic arts film.

the film. This is why there is silver content in film processing waste products (For more information on silver recovery, please refer to the Linotype-Hell technical information piece entitled Film Processor Chemicals.)

The ability of a film to hold detail is called its resolution, and is dependent on the size of the silver grains and their distribution in the film emulsion. Silver grains vary in size, but are generally smaller than a micron and are distributed evenly throughout the emulsion. For comparison, human hair ranges in diameter from 30 to 100 microns in diameter, dry toner for xerography may be 5 to 20 microns in diameter, imagesetter addressability at 3386 dots per inch is 7.5 microns, tobacco smoke ranges from .01-1 microns in diameter, and finally, silver grains vary in size from .005 to 2 microns in diameter.

The small size of silver grains gives film the ability to hold a great amount of detail. In fact, the ability of film to hold detail is actually greater than the ability of most laser recording devices to produce it. But no matter what level of detail is recorded on the film, none of it is visible until the film is processed.

Film and light

¹There is a lot of silver halide spread through the emulsion of a piece of film. As exposure increases, more of the silver halide within the film is affected by the light. Generally speaking, increasing the exposure also increases the density of that area on film after processing.

Film resolution

Film processing	Film processing can be divided into four steps that will be familiar to anyone who has done any photographic darkroom work: developer, stop bath, fixer, and wash. The <i>developer</i> is what makes the exposed silver halide turn black. The <i>stop bath</i> stops the activity of the developer. The <i>fixer</i> makes the exposed silver grains stay black permanently. The <i>wash</i> removes any chemicals that remain on the film after the fixer. (If these chemicals remained on the film they could cause yellowing or fading of the image.)		
Graphic arts film	There are three basic types of film in use in the graphic arts: lith, rapid access, and hybrids. Lith film (actually lithographic) was the most common graphic arts film for many years. It is capable of producing excellent high density films, however controlling a lith film processor is a difficult task requiring constant monitoring. Rapid access films cannot achieve the high maximum density (dmax) of lith films, but the process is much easier to control. Recently a new type of hybrid film has been developed. Hybrids can achieve higher densities than rapid access films, but their process is easier to control than lith. So far, their use is not widespread because of the cost of their chemicals and the fact that rapid access and hybrid films are the most commonly used among imagesetters, primarily because of their ease of use.		
Rapid access film processing	Automated film processors are very similar in operation. For the purpose of this piece we will look at a typical rapid access film processor. The film in a rapid access processor is conveyed mechanically through four basic components: developer tank, a fixer tank, a wash tank, and a heated air dryer. (See Figure 2.) You will notice that this sequence doesn't exactly match the four standard steps described above. First, there is no stop bath; the fixer performs the role of both stopping and fixing. In addition, there is a dryer which dries the film as it leaves the processor.		
Agitation, time, & temperature	Three factors play an important role in film processing: agitation, time and temperature. Agitation is important because the flow of the chemicals near the surface of the film determines the speed at which a chemical reaction takes place. Unless there is some agitation in each bath, those chemicals near the surface of the film become exhausted and are not replaced. This slows the rate at which the chemical reaction takes place. Agitation must occur consistently because otherwise it becomes difficult to estimate the amount of time it will take for a reaction (like development) to take place. Film processors achieve agitation in a couple of ways. First, chemicals may be circulated within the tank as chemicals are pumped in and out. Also, the movement of the film through the baths in the processor helps circulation.		
	By setting the speed with which the film goes through the processor you determine the amount of time that the film spends in each bath. Clearly, the longer you leave the film in a bath, the greater the chance that a chemical reaction will take place. Temperature of the chemicals in the baths also plays a role. Generally, chemical activity increases as temperature increases. For rapid access processors, the temperature of the developer is particularly important. You will notice that the maximum density you achieve on film will vary greatly if the temperature of the developer is allowed to vary. If your processor has no temperature gauge, you can attach an inexpensive digital thermometer to any		
	notice that the maximum density you achieve on film will vary greatly if the temperature of the developer is allowed to vary. If your processor has no tem-		

Setting up a presson	When you get temperature and append for the first time, your best bet is to fall
Setting up a processor	When you set temperature and speed for the first time, your best bet is to fol- low manufacturer's recommendations. It is impossible to make general speed and temperature recommendations for the wide range of equipment on the market. (Though one processor might use a developer temperature of 93° and a speed setting of 30 seconds, this is useful only if you are working with the same processor under identical conditions.) Generally, it isn't wise to raise bath temperatures too high. While it will speed the rate of chemical reaction, it also causes the chemicals to degrade more quickly. ²
² Oxidation (which occurs when oxy- gen is accepted into a solution) accelerates the degradation of the developer. High temperature as well as agitation can speed oxidation. In general it is best to keep all temper- atures as low as possible to get the	The easiest way to keep your system working at its best is to set the time and temperature, keep them constant, and maintain your maximum density through adjustment of the imagesetter laser intensity (often referred to as the density setting). Monitoring maximum density is a requisite. Similarly, control strips ³ , if available for the film material that you use, can make it easier to judge the state of the chemicals in the processor.
results that you want. This also holds true for dryer temperature.	Here are a couple of tips for consistent film processor operation:
³ A control strip is a piece of pre- exposed film that is sent through a processor. By measuring the result- ing densities you can tell if the pro- cessor is working properly.	• It is important to be sure that developer temperature stays at a constant level. To achieve this, many people leave their processors on all the time, rather than turning them off at night. Leaving the processor on eliminates the problem of waiting for the temperature to come up at the beginning of a shift. However, oxidation is more likely to occur when the processor is on (because of the higher temperature and circulation). This will accelerate the exhaustion of chemicals. Therefore leaving the processor on is more appropriate for companies that run extra shifts.
	• Don't set up different temperatures for different film materials. This leads to inconsistency since the temperature in a bath does not change instanta- neously. Similarly, if you set different times for different materials, it is very easy for a worker to send the film through at the wrong time setting. It is best to leave these factors constant and change the exposure (laser intensity setting) to get the results you want.
	 Film storage conditions are important. Store film in a cool and dry place. Let the film come back to room temperature before using.
Monitoring other factors	Developer temperature and maximum density are the two primary factors to monitor. However there are other tests that allow you to determine the state of the developer and fixer. For example, pH (the acidity or alkalinity of a solu- tion) can be measured with specially-treated paper strips, and specific gravity can be measured with a hydrometer. You might use these types of devices to tell if you have mixed the proper proportions of chemicals and water.
Troubleshooting	Film processing is a combination three processes: mechanical, electrical, and chemical. The process is mechanical because of the path that the film takes through the processor; electrical because of the process of heating and drying; and chemical because of the reactions taking place. When trou- bleshooting, the problem itself may give you a clue to its source. For exam- ple, a physical problem like a scratch, can often be traced to a sharp edge on a cassette, guide or roller. The chart on the following page shows potential film problems and their likely causes.
Cleaning a film processor	Cleaning a film processor is one of the least popular jobs in the graphic arts, but it must be performed regularly. How often depends on your production volumes, but even lightly-used processors benefit from weekly cleanings. You want to strike a balance between changing chemicals frequently enough that the process remains consistent, and yet not so frequently that you are pro- ducing too much chemical waste. The handling and disposal of these waste chemicals has been discussed in a Linotype-Hell technical information piece entitled Film Processor Chemicals.

	Troubleshooting Common Film Processor Problems			
Problem	Characteristics	Causes		
Streaking	Uneven development	Uneven rollers, residue on rollers, too high dryer temperatures, exhausted or contaminated chemicals ⁴ , contaminants in wash		
Scratching	Noticeable as a physical scratch in clear areas, often also as a clear line in solid areas. Usually runs parallel to length of film.	Physical impediment in film or take-up cassettes, on rollers or elsewhere in processor. May indicate soft emulsion. Emulsion may be softened by exhausted chemicals or excessive dryer temp.		
Light leaks	Areas exposed by room light	Ineffective seals in cassettes, poor film loading		
Jams & roller wraps	Film catches on rollers	Sticky emulsion (see Scratching), aging rollers		
Low dmax	Reduced developer activity	Weak or contaminated chemicals, low developer temperature, unexpectedly increased speed		
Fogging of clear film	Overactive development	Too long in developer, unexpected developer temperature increase, ineffective safe light		
Pin holes	Small clear specks in solid black	Poor film batch, dust, encrusted rollers		
Algae/Bacteria	Gunk in the wash water	Lack of filtration. May be solved with filtration, more frequent wash changes, or by swapping fixer and wash racks after cleaning.		
Static	Lightning-like marks on film	Often a result of low humidity. May be resolved with increased humidity or anti-static spray.		
⁴ Fixer can contaminate the developer if the fix rack is removed carelessly or if jammed film is pulled through the processor.				
Processor selection	Finally, here are some of	questions to ask when selecting a processor:		
	through it? A process pare an estimate of the	ropriate for the types of volumes that will be run or's durability is a key selection issue. You should pre- ne number of pages (or preferably feet of material) gh the processor on any given day.		

- What factors are important for consistent operation? Keep in mind that tank size and replenishment rates play a role in consistency. (For more information on replenishment, please refer to the Linotype-Hell technical piece entitled Film Processor Chemicals.)
- What will be needed to install the processor? The physical size of the processor, its electrical and ventilation requirements, as well as access to water should be considered. Be aware that the temperature and humidity of the processor room (as well as film storage areas) can play a role in both film dimensional stability and static problems.
- Do I require an on-line processor? (With an on-line processor film goes directly into the processor instead of into a take-up cassette.) An on-line processor limits loss in time and materials due to cutting, advancing, and processing film off-line.

 Comments
 Please direct any questions or comments to:

 Jim Hamilton, Marketing Department

 Linotype-Hell Company

 425 Oser Avenue

 Hauppauge, NY 11788

Acknowledgements Many thanks to Steve McMath of Whitecoat Imaging, and Walter Ullrich of Linotype-Hell Company for their help in producing this document.

Part Number 3308, 2/92

© 1992 Linotype-Hell Company. All rights reserved. All company and product names are trademarks or registered trademarks of their respective owners.